Journal of Medical Internet Research
Effects of a 12-Week Digital Care Program for Chronic Knee Pain on Pain, Mobility, and Surgery Risk
Background

Chronic knee pain (CKP), often caused by knee osteoarthritis, affects 1 in 4 individuals over the age of 55 [1], and is a major health condition [2] that is becoming increasingly prevalent [3]. The effects of CKP are far-reaching and not limited only to the knee joint. Rather, chronic pain can result in negative effects on general health status including social functioning, energy and vitality, general health perception, limitations due to emotional and physical problems [4], negative effects on quality of life [5], productivity [6], emotional well-being [7], and health care costs [8].
Current recommendations for management of chronic pain suggest that treatments addressing multiple aspects of pain, including physical, psychological, and social, are most effective as compared to a single therapy [9,10]. Recommended components of effective non-pharmacological care for chronic musculoskeletal pain include physical activity, patient education, weight reduction, and self-management and coping strategies [9,11–13]. Thus, an effective treatment algorithm for CKP is a comprehensive program consisting of the main components of recommended conservative care.
Such comprehensive programs for chronic pain - including knee osteoarthritis (OA), one of the most common diagnosis for CKP [11] - have been shown to improve pain and function [15–23] and reduce utilization of total knee arthroplasty (TKA) [12]. However, despite research into comprehensive programs for CKP, utilization of such programs outside of the research arena is rare. For example, it is estimated that 80% of individuals with CKP due to knee OA are not adequately treated with conservative care [13]. This, in turn, leads many patients to undergo costly knee surgeries that could have been otherwise avoided [14]. Thus, there is a significant need to improve access and increase use of a comprehensive treatment program for the large population of individuals affected by CKP.
Digital technology has the potential to effectively provide comprehensive CKP programs. A digital care program (DCP) incorporating multiple components of recommended care could allow for more efficient, effective, and economical treatment by overcoming barriers to behavior change often observed in traditional in-person care, such as travel time, missed work, cost of care, and limited access to healthcare. Furthermore, a DCP incorporating remote sensing would allow for monitoring of patient adherence, a critical barrier limiting long-term effectiveness of treatment programs [15,16]. Only a few studies, however, have examined the use of digital technologies for CKP, investigating web-based platforms for physical activity and exercise [17,18], pain coping training [19], and more comprehensive programs incorporating education and exercise [20-22]. In particular, there are limited studies using a more rigorous randomized controlled design [18,19,22], and the use of digital health in musculoskeletal conditions is regarded as early stage [23].
We have developed a 12-week program for CKP called the Hinge Health DCP [24]. It consists of recommended components of non-pharmacological care for chronic musculoskeletal pain and includes sensor-guided exercise therapy promoting local muscle strengthening and stretching, education, cognitive behavioral therapy, psychosocial support through teams and personal health coaches, weight loss, and activity tracking. We have previously shown that the Hinge Health 12-week DCP improves clinical outcomes of pain, function, and stiffness over a period of 6 months after initiation of the program in a single-arm study of individuals with CKP [24]. The purpose of this study was to assess the short-term effectiveness (12 weeks after initiation) of the Hinge Health DCP in improving knee pain and disability in subjects with CKP, as compared to a control group receiving treatment as usual and knee care education only. We employed a randomized controlled trial with the hypothesis that the DCP would cause a greater improvement in outcome than the control treatment.
- For a full list of references download the clinical study
Key Takeaways
Randomized Controlled Trial
Methods and Results
We enrolled 162 participants into a randomized controlled trial between January and March 2017. Participants were recruited from participating employers using questionnaires for self-assessment of their knee pain, and randomized into treatment (n=101) and control (n=61) groups. Participants in the treatment group were enrolled in the Hinge Health digital care program for chronic knee pain. This is a remotely delivered, home-based 12-week intervention that includes sensor-guided exercise therapy, education, cognitive behavioral therapy, weight loss, and psychosocial support through a personal coach and team-based interactions. The control group received three education pieces regarding self-care for chronic knee pain. Both groups had access to treatment-as-usual. The primary outcome was the Knee Injury and Osteoarthritis Outcome Score (KOOS) Pain subscale and KOOS Physical Function Shortform (KOOS-PS). Secondary outcomes were visual analog scales (VAS) for pain and stiffness respectively, surgery intent, and self-reported understanding of the condition and treatment options. Outcome measures were analyzed by intention to treat (excluding 7 control participants who received the digital care program due to administrative error) and per protocol.
In an intent-to-treat analysis the digital care program group had a significantly greater reduction in KOOS Pain compared to the control group at the end of the program (greater reduction of 7.7, 95% CI 3.0 to 12.3, P=.002), as well as a significantly greater improvement in physical function (7.2, 95% CI 3.0 to 11.5, P=.001). This was also reflected in the secondary outcomes VAS pain (12.3, 95% CI 5.4 to 19.1, P<.001) and VAS stiffness (13.4, 95% CI 5.6 to 21.1, P=.001). Participants’ self-reported likelihood (from 0% to 100%) of having surgery also reduced more strongly in the digital care program group compared to the control group over the next 1 year (–9.4 percentage points, pp, 95% CI –16.6 to –2.2, P=.01), 2 years (–11.3 pp, 95% CI –20.1 to –2.5, P=.01), and 5 years (–14.6 pp, 95% CI –23.6 to –5.5, P=.002). Interest in surgery (from 0 to 10) also reduced more so in the digital care program compared to control group (–1.0, 95% CI –1.7 to –0.2, P=.01). Participants’ understanding of the condition and treatment options (on a scale from 0 to 4) increased more substantially for participants in the digital care program than those in the control group (0.9, 95% CI 0.6 to 1.3, P<.001). In an analysis on participants that completed the intervention (per protocol analysis) all primary and secondary outcomes remained significant at greater effect magnitudes compared to intention to treat, with those completing the program showing a 61% (95% CI 48 to 74) reduction in VAS pain compared to 21% (95% CI 5 to 38) in the control group (P<.001).

Accounting for the cost of administering the program, we estimate net cost savings on surgery alone of US $4340 over 1 year and $7900 over 5 years for those participants completing the digital care program compared to those in the control group receiving treatment-as-usual.
This trial provides strong evidence that a comprehensive 12-week digital care program for chronic knee pain, including osteoarthritis, yields significantly improved outcomes for pain, physical function, stiffness, surgery risk, and understanding of the condition, compared to a control group.